The generator matrix

 1  0  0  1  1  1  2  0  0  2  1  1  1  1  X  1  0  1  1  2  1  1  0  2  1  1  1  0  0  0 X+2  X X+2  X X+2  X X+2  X  1  1  1  1  X  1  1  1  1  1  1  1  1  1  1  1  1  X  2  1 X+2  1  X X+2  1 X+2  0  2  X  2  1 X+2  1  1 X+2  1  0  2  1  1  X  X  1  X X+2  1  1  1  2  2  0  1
 0  1  0  0  1  1  1  X  1  1  X X+1  X X+1  1  1  2  1  X  1 X+1  X  1  1  0  0 X+1  1 X+2  2  1  1  1  1  1  1  1  0  X X+1  X X+1  X  2  3  2 X+1  3 X+2  0 X+3  0  1 X+2  3  0  X  1  X  X  2 X+2 X+3  X X+2  X  2  2  3  2 X+3 X+2  1 X+3  1  1  0 X+2  1  1 X+3 X+2  0  1  2 X+1  0  0  1  X
 0  0  1  1  2  3  1  1  X X+1  2  1  3  0  0 X+3  1 X+2 X+2  3 X+1 X+3  2 X+1 X+1  X  X  X  1  1  1  X X+1  1  0 X+3 X+2  1  0 X+2  1 X+3  1 X+3 X+2  0  3  3 X+3 X+2  2  1  2 X+2 X+3  1  1 X+3  1 X+2  1  1 X+3  1  1  X  1  1  3  1  3  X X+1 X+1  3 X+3 X+3  2 X+1  3 X+1  1  1 X+1 X+2  1  1  1 X+3  0
 0  0  0  2  0  2  2  2  2  0  2  0  0  2  0  2  2  0  2  0  0  0  2  2  2  0  2  0  2  0  0  0  0  2  2  2  2  0  0  0  2  2  0  0  2  2  2  0  2  2  0  0  2  0  0  2  0  0  2  0  2  2  2  0  0  2  0  2  2  2  0  0  2  2  0  2  2  2  2  0  0  2  2  0  2  2  0  2  0  0

generates a code of length 90 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 86.

Homogenous weight enumerator: w(x)=1x^0+138x^86+144x^87+181x^88+116x^89+130x^90+36x^91+57x^92+16x^93+52x^94+24x^95+38x^96+44x^97+18x^98+4x^99+16x^100+6x^102+1x^112+1x^116+1x^120

The gray image is a code over GF(2) with n=360, k=10 and d=172.
This code was found by Heurico 1.11 in 0.449 seconds.